您現在的位置:海峽網>新聞中心>IT科技>科技前沿
      分享

      微藻是一類個體微小、結構簡單的植物。隨著生物技術的發展,我們在食品、生物醫藥、材料、環保、能源,乃至航空航天等領域都能看見它的身影。小小的微藻究竟有著怎樣的本領讓它能在各領域表現出色?圍繞這個問題,生物版今日起特推出“小微藻大用途”系列報道,帶您看看微藻的“十八般武藝”。

      結構簡單、種類繁多的微藻,廣泛分布于海洋、淡水和土壤等生態系統。在這個“大家族”中,個別藻類憑借特殊結構,有望在醫用領域一展所長。

      近日,浙江大學周民教授團隊聯合哈佛大學醫學院陶偉教授團隊,在國際期刊《自然·通訊》發表研究論文介紹,聯合團隊將鈍頂螺旋藻經簡單的脫水—復水化處理,裝載上輻射防護藥物氨磷汀,制備出了可口服的螺旋藻—氨磷汀遞送系統。

      動物試驗結果顯示,這一遞送系統在整個小腸內表現出全面的防護作用,優于游離藥物和腸溶性膠囊,能在不影響腫瘤治療效果的情況下防止放療導致的腸道損傷,延長生存期,還可避免氨磷汀的長期毒性,對腸道微生物群穩態起保護作用。

      “微藻種類龐大,約有3萬多種記錄在冊,目前只有超過15種微藻被用于醫學界。考慮到培養成本和應用價值等條件,醫學中常用的微藻種類較多,包括藍藻門、綠藻門、紅藻門等。”周民告訴記者,由于微藻易獲取、易培養且具有獨特的表面結構及豐富的活性物質,在生物成像、藥物遞送、乏氧腫瘤治療、傷口愈合等方面有巨大的應用價值。

      利用活性表面 進行藥物遞送

      “傳統藥物遞送系統具有藥物作用時間短、生物利用度差、合成困難等缺點。而微藻來源廣泛、培養成本低,活性表面大且可有效吸附功能分子、金屬元素等,近幾年已作為載體被廣泛用于藥物遞送系統的構建。”周民說。

      比如2020年4月,周民團隊在期刊《微尺度》發表成果,利用螺旋藻的特性,將小分子化療藥物阿霉素加載至螺旋藻上,合成載藥系統。研究顯示,螺旋藻帶有負電荷的表面可通過靜電吸附裝載帶正電荷的小分子藥物,其細胞膜上的水通道和連接孔也允許小分子通過并進入膜內,顯示出了對藥物的較高負載效率。

      腫瘤細胞在快速增殖中會消耗大量的氧氣,導致腫瘤組織內部存在缺氧微環境,這是眾多腫瘤治療方法出現耐受現象的原因之一。靶向供氧到腫瘤部位,是提升放療和光動力治療效果的突破點之一。

      含有豐富葉綠素的微藻,具備一定的生物傳感能力。近年來,許多科研人員著眼于利用微藻光合作用原位產氧,改善腫瘤組織內部的乏氧情況,增強腫瘤治療效果。

      “同時,微藻表面積較大,磁化硅藻可裝載大量藥物,并在磁場控制下實現靶向運輸和藥物緩釋。”周民介紹,團隊2年前曾研制出一款微納機器人,以微藻作為活體支架,附著磁性涂層,在外部磁場控制下,使其定向運動至腫瘤組織,再通過體外光照,讓微藻原位產生氧氣來減輕腫瘤乏氧微環境,提高放療效率。

      光合作用產氧 促進傷口愈合

      在傷口處涂些特制藥膏,再用激光照射處理,藥膏含有的微藻成分即可產生活性氧,會對使傷口感染的厭氧菌進行“阻擊”……這類方式如今已不鮮見。

      傷口愈合可以分為炎性期、增生期和重塑期三個階段,每個階段都有氧氣的參與,其中細胞增殖、新生血管生成、膠原合成等修復活動尤其離不開氧氣。但傷口中普遍存在的血管破裂或收縮會妨礙供氧,導致組織缺氧,不利于傷口愈合。

      浙江大學轉化醫學研究院博士研究生張東曉表示,增加傷口局部的氧氣濃度能有效加快傷口愈合,以往臨床上采用的高壓氧療或局部氣體氧療等方法,對皮膚穿透性一般。微藻是天然的光合生物,在加快傷口愈合方面有用武之地。

      目前,全球糖尿病患者人數眾多。但鮮為人知的是,其中約25%的糖尿病患者終生面臨慢性傷口不愈的風險。糖尿病患者往往會由于傷口缺氧,導致新生血管生成障礙,慢性傷口難以愈合,引發糖尿病足潰瘍,嚴重的甚至會迫使患者截肢。

      2020年5月,南京大學胡一橋、吳錦慧團隊在國際期刊《先進科學》發表研究成果。團隊設計出一種由活性微藻水凝膠制成的產氧貼片,可以原位產生穿透皮膚的溶解氧,穿透效率較傳統局部氣態氧治療高近100倍。

      經實驗表明,該貼片遞送的溶解氧可以有效促進成纖維細胞的增殖、角質層細胞的遷移以及內皮細胞的血管分化,并促進糖尿病小鼠的慢性傷口愈合和皮瓣移植的存活。

      張東曉介紹,國外已有科學家創造性地將基因修飾的萊茵衣藻植入外科縫線中,由此制造出的具有光合作用的縫線,能持續釋放氧氣及重組人源生長因子,有效地促進傷口愈合。近年來,對微藻制造縫線或貼片等的相關研究逐漸增多,經由微藻制造的縫線或貼片成本低廉、合成簡單,具有較高的臨床轉化及商業化價值。

      自帶熒光特性 輔助醫學成像

      據了解,由于微藻中富含葉綠素等光合色素,具有熒光特性,因此無需任何額外熒光標記即可實現體內的無創追蹤,是其作為藥物遞送載體的“加分項”。

      “微藻具有‘診療一體化’的性能,可用于醫學影像引導下的診斷和治療,既能增強治療效果,又能持續監測病灶發展。”張東曉舉例道,硅藻便是優秀的生物成像材料,其外殼是由二氧化硅組成的六邊形微孔網狀結構。2018年,國外研究人員利用硅藻精密的納米多孔結構及光子晶體特征開發出用于超靈敏熒光免疫分析的生物傳感器,與具有同樣功效的非硅藻生物傳感器相比,光譜信號大大增強。經動物實驗驗證,相較于傳統的表面增強拉曼散射免疫分析,這一傳感器對小鼠免疫球蛋白G的檢測精度提高了10—100倍。

      距離臨床應用 尚有一段距離

      周民表示,越來越多的研究證明,微藻的不同給藥方式,包括口服、注射或外用等均具有良好的生物相容性和安全性,還可通過泌尿系統代謝排出體外。但目前微藻的醫用研究多局限于小鼠等小動物模型,距離真正臨床應用還需更多數據支持。

      此外,微藻的開發、培養和規模化生產也阻礙著微藻生物技術產業的發展。據了解,微藻產業化生產受限于脫水和收獲兩個過程,藻類細胞顆粒尺寸不均、細胞膜表面較強的電負性以及生長頻率過快是這兩個過程主要面臨的挑戰。

      周民表示,為解決以上問題,科學家們通常將浮選法應用于微藻生產,該方法收獲效率高于88.8%,且易于實現微藻富集,具有操作性強、成本低等優點。因此,正被嘗試運用于微藻的規模化生產。期待未來有更多的研究者投入微藻的相關研究,為促進人類健康作出貢獻。

      責任編輯:莊婷婷

             特別聲明:本網登載內容出于更直觀傳遞信息之目的。該內容版權歸原作者所有,并不代表本網贊同其觀點和對其真實性負責。如該內容涉及任何第三方合法權利,請及時與ts@hxnews.com聯系或者請點擊右側投訴按鈕,我們會及時反饋并處理完畢。

      相關閱讀
      關鍵詞: 微藻
      最新科技前沿 頻道推薦
      進入新聞頻道新聞推薦
      情聚八閩,共啟新程!福建省姓氏源流研
      進入圖片頻道最新圖文
      進入視頻頻道最新視頻
      一周熱點新聞
      下載海湃客戶端
      關注海峽網微信
      ?

      職業道德監督、違法和不良信息舉報電話:0591-87095414 舉報郵箱:service@hxnews.com

      本站游戲頻道作品版權歸作者所有,如果侵犯了您的版權,請聯系我們,本站將在3個工作日內刪除。

      溫馨提示:抵制不良游戲,拒絕盜版游戲,注意自我保護,謹防受騙上當,適度游戲益腦,沉迷游戲傷身,合理安排時間,享受健康生活。

      CopyRight ?2016 海峽網(福建日報主管主辦) 版權所有 閩ICP備15008128號-2 閩互聯網新聞信息服務備案編號:20070802號

      福建日報報業集團擁有海峽都市報(海峽網)采編人員所創作作品之版權,未經報業集團書面授權,不得轉載、摘編或以其他方式使用和傳播。

      版權說明| 海峽網全媒體廣告價| 聯系我們| 法律顧問| 舉報投訴| 海峽網跟帖評論自律管理承諾書

      友情鏈接:新聞頻道?| 福建頻道?| 新聞聚合
      亚洲av综合av一区二区三区| 亚洲一卡2卡三卡4卡有限公司| 午夜影视日本亚洲欧洲精品一区 | 亚洲中文无码mv| 久久亚洲AV成人出白浆无码国产| 亚洲av无码片在线播放| 国产亚洲精品福利在线无卡一| 最新亚洲人成无码网站| 亚洲精品第一国产综合亚AV| 亚洲熟伦熟女专区hd高清| 亚洲第一成人在线| 亚洲国产乱码最新视频| 国产成+人+综合+亚洲专| 国产成人精品日本亚洲直接| 亚洲国产午夜精品理论片 | 亚洲视频手机在线| 久久精品国产亚洲AV无码娇色| 亚洲久本草在线中文字幕| 亚洲制服中文字幕第一区| 久久亚洲精品人成综合网| 亚洲福利电影在线观看| 亚洲成人免费网址| 亚洲人成网男女大片在线播放| 91丁香亚洲综合社区| 亚洲成_人网站图片| 亚洲AV综合永久无码精品天堂| 亚洲AV无码专区国产乱码不卡| 久久久久亚洲精品无码网址色欲| 亚洲av综合av一区二区三区| 亚洲av成人一区二区三区在线观看 | 亚洲国产精品免费在线观看| 亚洲乱码一二三四五六区| 亚洲精品第一综合99久久| 亚洲精品国产suv一区88| 爱情岛亚洲论坛在线观看| 亚洲精品97久久中文字幕无码| 国产亚洲精品激情都市| 亚洲国产精品久久久天堂| 亚洲午夜未满十八勿入| 亚洲国产精品免费在线观看| 亚洲永久网址在线观看|